Как определить обрыв нулевого провода

Как определить обрыв нулевого провода

1. Введение

Обрыв нуля — это аварийный режим работы трехфазной электросети при котором, в результате обрыва (отгорания) нулевого рабочего провода, в случае несимметричной нагрузки, на подключенных к данной сети однофазных электроприемниках возникает напряжение значительно ниже либо наоборот значительно превышающее номинальное напряжение однофазной сети.

Последствия обрыва нуля — это вышедшее из строя электрооборудование и в первую очередь это дорогостоящие электронные приборы, такие как компьютеры, телевизоры, современные стиральные машины и т.д., которые являются наиболее чувствительными к перепадам напряжения сети, и в особенности к его повышению.

Совершенно не важно проживаете вы в частном доме или в квартире, трехфазная у вас сеть или однофазная при обрыве нуля питающей сети и при отсутствии должной защиты вы рискуете стать жертвой подобной аварии.

В данной статье мы разберемся с тем, что происходит при обрыве нуля, откуда в однофазной розетке может появиться 380 Вольт, а так же по каким причинам может произойти обрыв нуля и как от этого защититься.

2. Почему при обрыве нуля повышается напряжение?

Что бы ответить на этот вопрос разберемся с тем как устроена наша электросеть и как в нее подключаются электроприборы.

Есть два основных способа подключения электроприемников — параллельный и последовательный:

На картинке выше представлено параллельное подключение двух лампочек, при таком подключении напряжение на обоих лампочках будет одинаково и равно напряжению сети, вне зависимости от количества лампочек и их мощности, в то время как ток сети (I1) будет равен сумме токов I2 — который проходит через первую лампочку и I3 который проходит через вторую лампочку.

Именно по такой схеме подключается все электрооборудование в квартирах и частных домах.

Рассчитать общий ток при параллельном подключении можно по формуле:

I=U/R

где: U — напряжение сети, Вольт; R — сопротивление сети, Ом.

Из этой формулы видно, что ток в сети обратно пропорционален сопротивлению, т.е. чем выше сопротивление тем ниже ток и наоборот.

Каждый электрический прибор будь то простая лампочка или микроволновая печь имеет свое электрическое сопротивление, причем чем мощнее прибор тем меньше его сопротивление.

Общее сопротивление сети при параллельном подключении определяется по формуле:

где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Представим, что мы параллельно включили в сеть 2 лампочки: одна лампочка мощностью 75 Ватт сопротивление которой R1= 600 Ом, а вторая — 150 Ватт с сопротивлением R2= 300 Ом, тогда общее сопротивление сети будет равно:

Rсети=(600*300)/(600+300)=200 Ом

А теперь добавим в нашу сеть третью лампочку мощностью 75 Ватт с сопротивлением R3= 600 Ом, тогда:

Rсети=(600*300*600)/(600+300+600)=72 Ом

Общее сопротивление сети при подключении третьей лампочки уменьшилось.

ВЫВОД №1: Чем больше в сеть параллельно подключено электроприемников тем ниже будет ее общее сопротивление.

При последовательном подключении ток протекающий в цепи имеет одинаковую величину на всем ее протяжении (т.е. через обе лампочки протекает одинаковый ток вне зависимости от их мощности)который рассчитывается по той же формуле, что и при параллельном подключении:

Однако общее сопротивление сети при последовательном подключении определяется как сумма сопротивлений всех подключенных электроприемников:

где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Напряжение сети при последовательном подключении в нее электроприборов разделяется между этими электроприборами пропорционально их сопротивлению. Рассчитать напряжение на каждом приборе можно по следующей формуле:

Uэлектроприемника = Iсети*Rэлектроприемника

Как видно из этой формулы, напряжение на электроприемнике прямо пропорционально его сопротивлению.

Для наглядности произведем расчет напряжения на двух подключенных последовательно в сеть 220 Вольт лампочках мощностью 75 Ватт (сопротивление одной лампочки R=600 Ом) (рис. 1)

В этом случае общее сопротивление сети будет равно:

Rсети= Rлампочки №1 + Rлампочки №2=600+600=1200 Ом

Ток сети будет равен:

Тогда напряжение на лампочке будет равно:

Uлампочки = Iсети*Rлампочки=0,183*600=110 Вольт

Так как сопротивление (мощность) обоих лампочек одинаково напряжение сети разделится между ними поровну.

Таким образом выполняется подключение лампочек в гирляндах, например, если взять десятивольтовые лампочки одинаковой мощности то подключив 22 таких лампочки последовательно в сеть 220 Вольт на каждой лампочке будет как раз 10 Вольт (220Вольт/22лампочки=10Вольт на каждую лампочку), однако если перегорит одна лампочка цепь разорвется и вся гирлянда погаснет.

Теперь представим, что мы заменили одну из лампочек на лампочку мощностью 150 Ватт, сопротивление которой соответственно будет Rлампочки №2 =300 Ом (рис. 2)

Тогда общее сопротивление сети будет равно:

Rсети= Rлампочки №1 + Rлампочки №2=600+300=900 Ом

Ток сети будет равен:

Тогда напряжение на лампочке №1 (75 Ватт) будет равно:

Uлампочки №1 = Iсети*Rлампочки №1=0,2444*600=147 Вольт

А напряжение на лампочке №2 (150 Ватт) составит:

Uлампочки №2 = Iсети*Rлампочки №2=0,2444*300=73 Вольта

То есть менее мощная лампочка будет получать большее напряжение и соответственно ярче гореть.

ВЫВОД №2: При последовательном подключении в сеть электроприборов на менее мощные электроприборы «выделяется» большее напряжение чем на приборы большей мощности.

Ну и наконец разберемся почему при обрыве нуля в вашей розетке может появиться 380 Вольт, для этого представим обычную схему подключения квартир в многоквартирном жилом доме (аналогичным образом подключаются так же и частные жилые дома к линиям электропередач):

На схеме представлено подключение трех квартир, т.к. нагрузка по фазам должна разделяться равномерно все квартиры подключены на разные фазы, при этом во всех трех квартирах общий ноль.

В трехфазной сети напряжение между фазами составляет 380 Вольт, а напряжение между фазой и нулем — 220 Вольт, соответственно при данной схеме в каждой из квартир напряжение сети составляет 220 Вольт и в эту сеть параллельно подключаются электроприборы, ток при этом протекает от фазы к нулю.

Теперь посмотрим что происходит в электросети при обрыве нуля (для большей наглядности и упрощения расчетов представим, что жильцы квартиры №3 уехали в отпуск предусмотрительно отключив все электроприборы в квартире):

На приведенной выше схеме видно, что при обрыве нуля первая и вторая квартиры оказались подключены последовательно в сеть 380 Вольт, ток в этом случае протекает уже не от фазы к нулю, а от фазы к фазе.

Как уже было сказано выше, при последовательном подключении в сеть электроприборов, на менее мощные электроприборы выделяется большее напряжение (вывод №2). Если бы общая мощность включенных в сеть электроприборов в квартире №1 была равна мощности включенных в сеть приборов в квартире №2, то напряжение между квартирами поделилось бы поровну, т.е. по 190 Вольт на квартиру, однако на практике такого как правило не бывает.

В нашем случае у жильцов в квартире №1 в сеть включены только компьютер, телевизор и одна лампочка общей мощностью 475 Ватт в то время как в квартире №2 в сеть включены: стиральная машина, электропечь, и 2 лампочки общей мощностью 3950 Ватт следовательно, т.к. общая мощность квартиры №1 значительно ниже, напряжение в электросети квартиры №1 будет намного выше.

Произведя расчет можно определить, что напряжение в электросети квартиры №2 составит 40 Вольт, при таком напряжении электроприборы в квартире №2 перестанут работать, нити накала в лампочках будут едва раскалены, в то же время напряжение сети в квартире №1 составит 340 Вольт, при таком высоком напряжении электроприборы в квартире №1 начнут выходить из строя, в первую очередь выйдут из строя наиболее чувствительные к перепадам напряжения сети электронные приборы, т.е. телевизор и компьютер, причем после их поломки общая мощность квартиры №1 уменьшится, а напряжение сети при этом соответственно будет увеличиваться пока все включенное в сеть электрооборудование в квартире №1 не»сгорит»:

Читайте также:  Как сделать короб для сабвуфера своими руками

После выхода из строя последнего электроприбора в квартире №1 электрическая цепь будет разорвана (ток перестанет протекать), при этом напряжение в электросети квартиры №2 станет равным нулю, а замерив напряжение в розетке квартиры №1 мы увидим 380Вольт.

Причины обрыва нуля.

Можно выделить несколько причин обрыва нуля:

1) Некачественное и не своевременное техническое обслуживание электрощитков (либо его полное отсутствие). Данная проблема особенно остро стоит в многоквартирных жилых домах.

Периодическое техническое обслуживание — залог безаварийной работы электрооборудования. К сожалению эксплуатирующие организации (ЖКХ) зачастую пренебрегают этим важным принципом и их электрики заглядывают в этажные электрощитки только после того как случается очередная авария.

Пример отгорания нуля от нулевой шинки в результате плохо зажатого контактного соединения:

2) Несимметричное распределение нагрузки.

Как уже было написано выше, нагрузка по фазам должна распределяться как можно более равномерно (симметрично).

Как видно из приведенных выше схем, при симметричной нагрузке (когда подключенная мощность на всех трех фазах одинакова) токи взаимоуравновешиваются, в результате ток в нулевом проводе отсутствует, однако при несимметричной нагрузке на фазах в нулевом проводнике протекает так называемый ток уравнивания компенсирующий неравномерность нагрузки, причем чем выше данная несимметрия, тем больше величина тока уравнивания и следовательно выше риск отгорания нуля.

3) Старая электропроводка. Если вам не посчастливилось жить в новостройке, то вполне возможно, что ваш дом проектировался лет 30-40 назад, когда нагрузка среднестатистической квартиры представляла собой пару лампочек и одно радио, в наше время в каждой квартире есть множество энергоемкого оборудования такого как СВЧ печи, электрочайники, электрические печи и т.д., но на такие нагрузки старая электропроводка конечно же не рассчитывалась.

Защита от обрыва нуля

Есть два основных способа защиты от обрыва нуля: повторное заземление нулевого проводника и установка реле напряжения:

1) Повторное заземление нуля — такой способ защиты подходит для частных жилых домов заземление которых выполняется по системе TN-C-S, при этом во вводном электрощитке дома к нулевому проводнику подключается контур заземления:

Как видно на схеме, при обрыве (отгорании) нуля, ток уравнивания продолжает протекать к контуру заземления, благодаря чему фазное напряжение сохраняется на уровне 220 Вольт. Подробнее о том как выполнить повторное заземление читайте статью: Заземление в частном доме.

2) Установка реле напряжения — данный способ применяется для защиты от обрыва нуля электросети квартир в многоквартирных жилых домах, а так же для защиты электросети частных жилых домов с заземлением выполненным по системе TT, либо вовсе не имеющих контура заземления.

Реле напряжения — это прибор контролирующий уровень напряжения электросети, в случае повышения или снижения его до недопустимого уровня реле напряжения отключает электросеть до того момента, как напряжение сети не вернется в норму.

Подробнее читайте статью реле напряжения.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Лампочка при обрыве нуля может гореть ярко, но недолго!

Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире.

В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети.

Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй.

Также, при изучении этой статьи важно знать о том, как формируются системы заземления.

Где бывает обрыв нуля

Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

Для начала, чтобы нагнать страха –

Последствия обрыва нуля в трехфазной сети

Расскажу случаи из жизни.

  1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
  2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!

Статья, как я менял там электрощиток – тут.

  • Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:
  • Отгорание нуля от нулевой шины

    Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

    Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

    На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

    Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

    В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

    Формирование однофазной и трехфазной сетей и обрыв нуля

    Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

    А что там свежего в группе ВК СамЭлектрик.ру?

    Подписывайся, и читай статью дальше:

    Напряжения в трёхфазной системе

    Рассмотрим этот вопрос ещё раз, только с другой стороны.

    Вот как выглядит упрощенно схема подвода питания в этажный щиток:

    Читайте также:  Лада веста какой цвет лучше

    Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

    Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

    Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

    К чему приводит отгорание нуля в трехфазной сети

    Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

    Обрыв нуля в трехфазной сети

    Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

    Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

    Картинка в другом виде, возможно, так будет легче понять:

    Перекос фаз в результате обрыва нуля.

    Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как

    220B, обозначены как

    0…380B. Объясняю, почему.

    Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

    Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

    Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

    У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

    Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

    Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

    Обрыв нуля в однофазной сети

    Тут картина будет следующей:

    Обрыв нуля в однофазной сети

    Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

    Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

    Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

    Плохой ноль. Пропадание нуля в квартире

    Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

    Хорошо, кто виноват – мы поняли. Что делать?

    Как защититься от обрыва нуля?

    Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.

    Из-за своей основной функции это реле называют также Реле обрыва нуля.

    Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.

    Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.

    Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:

    На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!

    Большая часть жилого фонда в РФ была построена еще при советской власти. Электросети в этих зданиях уже приходят в негодность, создавая большие проблемы для жильцов. Решить эти проблемы можно собственными силами, безопасно и без больших затрат.

    Какие могут быть причины обрыва проводки?

    При нормативной эксплуатации схема электросетей исправно работает много лет. При завышенной токовой перегрузке или при подключении электроприборов защитная система не включается, схема не действует, как положено.

    Причинами этого являются следующие факторы:

    • Перебои в скрытой проводке бывают при подключении сразу несколько единиц домашней техники, особенно в одну точку питания (например, с помощью переноски).
    • Долгая эксплуатация. При достижении предельного срока провода начинают выходить из строя и разрушаться.
    • Повреждение от механического действия. При ремонте могут повредить провод, и от этого может резко ускорится его разрушение.
    • Некачественный провод и монтаж электросетей. В этом случае они быстро нагреваются и выходят из строя.

    Поиск электропроводки в профилактических целях

    Во избежание проблем с проводкой необходимо:

    1. Работы по монтажу должны проводить только грамотные работники.
    2. Для лучшей безопасности надо установить выключатель на автомате, который станет срабатывать при перегрузках.

    Обычно поиск сети начинается, когда уже есть нарушения с электричеством. Но на самом деле лучше, когда схема проводки составлена заранее, это может пригодиться как в экстренных ситуациях, так и в различных бытовых:

    • Когда задумали сделать в квартире перепланировку. Надо тогда обязательно знать, где находятся электросети.
    • Перед тем как установить осветительные приборы, повесить что-либо на стену, нужно знать, где безопасно это можно сделать.
    • Перед ремонтом.

    Во всех этих случаях можно воспользоваться методами, которые помогут найти сеть, составить ее схему и при необходимости пользоваться ей.

    Общая инструкция поиска обрыва проводки

    Для этого потребуются следующие инструменты: отвертка-индикатор, бесконтактный индикатор, тестер, пассатижи, ножик, изолента.

    Для обнаружения повреждения используем индикаторную отвертку, проверяя ею розетку, в которой находится один контакт, в выключателе — второй. При наличии «фазы» оборван нулевой провод.

    Провода отходят от коробки распределения определенным образом – только перпендикулярно или параллельно полу, повороты идут под углами 90°, так что найти их достаточно точно нетрудно. От начала разводки по стене перемещают индикатор, в точке дефекта он подает сигнал цветом или звуком, которые пропадают, как только устройство оказывается рядом с местом обрыва проводки.

    Как обнаружить обрыв в открытой проводке

    В этом случае не требуется вскрывать стены, поэтому найти проблему проще.

    Алгоритм в этом случае следующий:

    1. Проверяют розетки путем подключения нагрузок и проверки мультиметром.
    2. Сначала определяют, в каком месте случился дефект. Делается это путем измерений мультиметром в контактах.
    3. Точному розыску поможет индикатор — устройство, фиксирующее присутствие «фазы».
    4. Определяют «фазу» после отключения электроэнергии. При ее отсутствии дефект находится в интервале от коробки до выключателя. Если она есть, проверяют ее на светильнике. Если ее нигде не определили, то дефект надо искать между коробкой и прибором освещения. Если она есть на светильнике, то «фаза» с «нулем» поменялись местами. Тогда надо найти, где это произошло, и соединить провода.
    5. Автомат для «фазы» на розетке находим путем включения и выключения автоматов в щитке. Найденный кабель отключаем от щита.
    Читайте также:  Постановка на учет в гибдд сколько стоит

    Две рабочие розетки должны соединяться двужильными проводами. Когда они объединены лишь одножильным проводом, то, скорее всего, повреждение возникнет именно в нем.

    Как обнаружить обрыв в кирпичной стене

    Это делают трассоискателем состоящим из генератора и приемника. Генератор соединяется с кабелем так: провод со знаком плюс к испорченной жиле кабеля, а минусовой к его целой жиле.

    Подключаем генератор. Трассоискателем перемещаем по стенке там, где предположительно идет кабель. Если он оказывается на пути скрытой проводки, он сигналит звуком. Возле обрыва проводки звук исчезает.

    Как обнаружить обрыв в бетонной стене

    Просто сделать это транзисторным датчиком. В зданиях из бетона электросеть идет исключительно горизонтально и вертикально с прямыми углами на поворотах, поэтому их расположение определить нетрудно.

    Датчик перемещают по пути скрытой проводки, в это время датчик сигналит. В месте обнаружения повреждения сигнала не будет.

    Старинные дедовские способы поиска проводов в стене методы

    Помимо вышеуказанных, применять следующие проверенные временем методы:

    • Визуальный метод — подходит многоквартирных домов, где прокладывают штробы. При снятии обоев по штробам возможно найти расположение сетей. Сети, расположенные под штукатуркой, таким методом не найдешь.
    • С помощью радио и приемника. Это непрофессиональный метод, основан на возникновении треска рядом с местом повреждения.
    • Аналогично действует обычный микрофон, присоединенный к проигрывателю или приемнику.

    Поиск обрыва проводки в разных сетях с помощью тестера

    Индикатор показывает место обрыва провода с максимальной точностью. Перемещая его по линии скрытой проводки, отмечают, где появляется максимальный свет или звук.

    Как определить обрыв с помощью транзисторного приемника

    Один из самых простых способов — транзисторный радиоприемник.

    1. Подключить в сеть какой-либо электроинструмент.
    2. Настроить приемное устройство на СВ.
    3. Перемещать его по поверхности стены.
    4. Место обрыва определяется по резкому треску и гулу в приемнике.

    Поиск проводов компасом

    Многие советуют пользоваться этим методом, так как при определенной нагрузке компас рядом с проводом реагирует на него, но с технической точки зрения такая нагрузка маловероятна, а при толстом слое штукатурки вообще невозможна.

    Логический метод поиска

    Чтобы отыскать их в стене, часто достаточно всего лишь подключить собственную логику, в 90% вариантах это помогает.

    Использовать надо такие принципы:

    • Провода располагаются параллельно и под прямым углом к полу.
    • От розетки они идут только вверх. Поэтому проводить работы там воспрещается.
    • Установку сети и устройств производят на 15 см от пола или потолка.
    • Используя эти принципы, можно сделать план схемы сетей в квартире.

    Проверка проводки самодельным устройством

    Для создания подобного прибора нужен патрон, лампа, 2 одножильных провода, ножик, пассатижи и изолента.

    1. К лампе с патроном подводятся провода с зачищенным на концах на 4-5 мм изоляционным слоем.
    2. Включается электричество. Если лампа светится, значит, устройство работает. На участке, где есть неполадки, лампа устройства не светится. Участок с обрывом провода заменяется.

    Подобное устройство не действуют, если сеть проходит на расстоянии более 5 см внутри стенки.

    Поиск проводов в стене радиоприемником

    Радиоприемник работает при настройке на частоту 100 кГц. В помещении должна быть абсолютная тишина. Прислонив устройство к стене, внутри которой проходит кабель под напряжением, можно услышать треск. Несмотря на популярность, особенной точностью данный метод не обладает.

    Поиск с помощью профессионального оборудования

    Методы поиска повреждений с помощью профессионального оборудования – самые надежные и точные.

    Специальные приборы бывают таких видов:

    1. Электростатические – основаны на действии электромагнитного поля провода. Такие приборы точные и доступные по цене и потому наиболее распространенные.
    2. Электромагнитные приборы действуют так же, но под нагрузкой проводов в 1 квт. Для этого надо к розетке подключить любое электроустройство.
    3. Металлоискатели от других устройств отличаются тем, что они генерируют электромагнитное поле. Они фиксируют любые изменения в проводнике.

    В реальной работе используются следующие приборы:

    • «Поиск» базируется на электростатическом принципе. У него 4 режима различной чувствительности, с поддержкою каких возможно прозвонить сеть в стене до 7 см.
    • Устройство «Дятел». Прозвонит стену до 8 см для обнаружения электросети.
    • Тестер СЕМ может найти обесточенные кабели, а также отыскать сломанные и испорченные кабеля.
    • Приборы Е-121 определяет состояние электросетей и место прорыва по особым сигналам.

    Поиск проводки мультиметром

    Поиск производится так:

    1. Мультиметр подключают в режим омметра. Стрелка ставится на ноль. Одна клемма подсоединяется к контакту, а другая — к проводу.
    2. Далее нужно следить за стрелкой устройства. При показаниях от 2 по 3 Ом кабель не поврежден. При 10 Ом и более – существует повреждение.

    Обрыв фазового провода

    Находим автомат, к которому подходит поврежденный кабель.

    • Отключаем электричество.
    • Отсоединяем все кабели.
    • Переключаем автомат и одновременно индикатором проверяем наличие «фазы».
    • Мультиметром тестируем, начиная со щитка, все соединения, идущие от поврежденного источника.

    Повреждение обычно находится без проблем на одном из проводов. Иначе необходимо проверить клеммные коробки – если есть свободный доступ к ним, именно там часто находятся повреждения. Если их нет и там, исследуем неработающие провода, клеммники, скрутки, для этого используется индикатор.

    Обрыв нулевого провода

    Подобное повреждение приводит к перекосу напряжений фаз, что представляет большую опасность не только для бытовой техники, но и для человека.

    Найти проблему с «нулем» можно аналогично «фазе», однако с некоторыми особенностями.

    Разрыв нуля ищут с помощью индикатора – он светится на «фазе» и показывает «ноль». Мультиметр тут не подходит, так как показывает большой разброс значений.

    При обнаружении проблем с «нулем» требуется проверить все элементы сети. При использовании кабеля с тремя жилами можно взять «землю» для передачи «ноля», но с большой осторожностью. Во-первых, тогда в розетке не будет «земли», а это опасно для бытовых приборов с большой мощностью, во-вторых, работа с «нулем» в принципе чревата опасностью из-за того что ударить током может даже после отключения электричества, если есть «фаза».

    Вскрытие стены при найденном обрыве

    • Отключаем электросеть.
    • Перфоратором очищаем от штукатурного слоя 20 см от середины обрыва.
    • Сверлим углубление для коробки и производят ремонтные работы.

    Рекомендуется на этом этапе обращаться к профессионалам.

    Видео о детекторах и методах поиска скрытой проводки

    Есть много видеороликов с подробными инструкциями на тему поиска дефектов электросети в стене. Они наглядно и подробно показывают по шагам, как можно дома решать данные проблемы своими силами и без больших затрат. В роликах можно узнать, как делать приспособление для этого, искать кабель и какими способами это сделать.

    Как устранить обрыв в проводке

    После отключения электроэнергии и фазного провода удаляем штукатурку, как было сказано выше, разводим в разные стороны концы поврежденного провода и готовим углубление под ответвительную коробку. Это делается перфоратором со специальной коронкой. Помещаем коробку в отверстие, закрепляем ее гипсом или алебастром. Внутрь помещаем провода, объединяем по цветам, обматываем места скруток изолентой. Коробку закрываем крышкой, проверяем работоспособность, и если она в порядке, маскируем под штукатуркой.

    Если обрыв найден у нулевого провода, то принцип устранения обрыва такой же, только в начале работы «ноль» отсоединяют от шины и подсоединяют к нему «фазу».

    Решить проблемы с электросетью дома возможно и своими силами. Главное, знать принципы безопасности для таких работ и неуклонно их придерживаться.

    Ссылка на основную публикацию
    Adblock detector